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INVESTIGATION OF THE HEAT TRANSFER LAWS IN A 

THREE-DIMENSIONAL VISCOUS SHOCK LAYER ON BLUNT 

BODIES AT ANGLE OF ATTACK AND SIDESLIP 

A. I. Borodin and S. V. Peigin UDC 533.6.011 

The authors analyze the results of numerical solution of the equations of the 
three-dimensional thin viscous shock layer over triaxial ellipsoids of differ- 
ent shapes in a flow of supersonic viscous gas, with no symmetry planes. 

In many applied tasks one needs to investigate the basic laws of heat transfer in three- 
dimensional flow of a supersonic viscous heat-conducting gas over blunt bodies of complex 
shape, over a wide range of Reynolds numbers. The thin viscous shock layer theory, first 
proposed in [i], is widely used to solve these problems. Being comparatively simple mathe- 
matically (a problem of parabolic type) this theory allows one to eliminate a number of de- 
fects present in the widely-used boundary layer theory. On the one hand, in shock layer 
theory one need not divide the entire flow region into individual sublayers, because the 
appropriate equations are uniformly applicable in the entire perturbed flow region froJ~ the 
shock wave to the body surface. On the other hand the shock layer equations describe :he 
flow correctly, asymptotically, over a substantially wider range of change of Reynolds num- 
ber, from small through medium to large [2]. 

However, the shock layer model possesses a number of limitations, associated in partic- 
ular, with the fact that the use of a simplified momentum equation along the normal leads to 
the appearance on the surface of a convex body of zero pressure lines (separation lines), 
beyond which the solution cannot be continued. 

On the whole, however, as is confirmed by analysis of numerous comparisons of solutions 
of shock layer equations with experimental data and with computations on a more complete 
formulation (see the review in [3]), the thin viscous shock layer model has good accuracy 
over quite a wide region of the forward surface of blunt bodies for which the shock layer 
thickness is small compared with a characteristic body dimension, and the surface pressure 
Pw is on the same order as the stagnation point value P0 (Pw/P0 ~ 0.05-0.1). 

Taking into account the above limitations, in this study we have solved the three- 
dimensional thin shock layer equations in their region of application in the case of f]ow 
over triaxial ellipsoids of different shapes at angle of attack and sideslip. We have ana- 
lyzed the influence of body shape, Reynolds number, and the other governing parameter~ of 
the problem on the basic heat transfer laws. Previously the thin shock layer equation~ have 
been solved for different special cases of three-dimensional flows in [4-11]. In [4, f] the 
authors investigated flow over delta wings of infinite size at angles of attack and side- 
slip, in [6] the authors investigated flow over rotating axisymmetric bodies at zero argle 
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of attack, and in [7] the authors investigated flow in the vicinity of a stagnation point 
with double curvature. In [8, 9] an approximate approach was proposed to determine the 
longitudinal pressure gradients on the lateral surface, thus closing the problem outside the 
stagnation point, for flow in the symmetry plane of blunt bodies; in [I0] this was proposed 
for flow at angle of attack over bodies with two planes of symmetry; and in [ii] for flow 
with no planes of symmetry. There are also papers where the laws of heat transfer over blunt 
bodies with a permeable surface in flow at angle of attack and sideslip, have been studied on 
the three-dimensional boundary layer theory, applicable at large Reynolds number [12, 13]. 

We consider flow in a three-dimensional thin viscous shock layer on blunt bodies washed 
at angle of attack and sideslip by a supersonic stream of viscous, heat-conducting gas. In 
a curvilinear coordinate system (6, q, ~) (~ is reckoned along the normal to the body, and 
6, q are chosen on the surface analogously as in [13]) the initial equations have the fol- 
lowing dimensionless form [2]: 
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The system (i) is solved with the no slip and no penetration conditions on the body 
surface 

~ = 0 :  u = w = v = O ,  T=T~(~, ~) 
( 2 )  

and the generalized Rankine-Hugoniot conditions at the shock wave 
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A n a l y s i s  shows t h a t  t h e  s t a g n a t i o n  p o i n t  ~ = 0 i s  a s i n g u l a r  p o i n t  o f  t h e  s y s t e m  o f  d i f f e r -  
e n t i a l  e q u a t i o n s  ( 1 ) .  I n  a d d i t i o n ,  f o r  ~ = 0 t h e  s y s t e m  o f  c o o r d i n a t e s  (~ ,  q) u s e d  on t h e  
body s u r f a c e  i s  d e g e n e r a t e .  T h e r e f o r e  in  t h e  n u m e r i c a l  s o l u t i o n  o f  t h e  b o u n d a r y  p r o b l e m  
( 1 ) - ( 3 )  we c o n v e r t  t o  t h e  new d e p e n d e n t  and i n d e p e n d e n t  v a r i a b l e s ,  a l l o w i n g  us  t o  i s o l a t e  
t h e  g i v e n  s p e c i a l  f e a t u r e s :  
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Fig. i. General geometry of the flow. 

After converting to the variables (4) we solve numerically the system of equations and bound- 
ary conditions thus obtained. Here, because of the choice of a coordinate system on ~;he 
surface, the solution has a number of special features. Firstly, since D varies in the 
range 0 ~ D 5 2~, and all the coefficients in the original equations are periodic functions 
of D, then in the solution we took into account the periodicity of all the desired functions 
with respect to the coordinate D. In addition, because of the degeneracy of the coordinate 
system ($, q) at the point ~ = 0, to obtain the solution in the vicinity of the stagnation 
point in a manner analogous to that of [13], we used a nondegenerate curvilinear, locally 
Cartesian coordinate system whose axes coincided with the body surface normal, and with the 
direction of the principal normal cross sections of the body at the stagnation point. 

A finite-difference solution was found using a scheme having approximation order 
O(A~) 4 + O(A$) + O(Aq) 2, which is a generalization of the scheme of [14]. The derivatives 
with respect to ~ were computed using backward differences, and derivatives with respect to 

were approximated by central differences. For stability of the numerical algorithm, the 
value of A($, q), describing the shock wave standoff distance, was determined by the cFclic 
marching method [15]. 

As an example we examined the flow at an angle of attack ~ and sideslip angle ~ o~er 
triaxial ellipsoids of different shapes. The geometrical flow scheme is shown in Fig. i. 
In a rectangular coordinate system (z I, z 2, z 3) the equation of the ellipsoid surface ~ad 
the form 

('~ 
(5) 

I n  t h i s  c a s e  t h e  c o n n e c t i o n  b e t w e e n  t h e  c o o r d i n a t e  s y s t e m  ( ~ ,  ~)  on t h e  e l l i p s o i d  s u r f , m e  
a n d  t h e  o r i g i n a l  C a r t e s i a n  s y s t e m  {z a} c a n  be  w r i t t e n  i n  e x p l i c i t  f o r m :  

z ~ = 1 - -  A cos (m~) - -  E - I  sin (m~) (AB cos ~ + C sin ~), 

z 2 = b [E cos ~ sin (m~) --  B cos &z~)], 

z ~ ~ - -  c[C cos (m~) + E - I  sin (m~) (BC cos ~ - -  A sin ~)], ( 6 )  

D = { I + ~ ~2 ~ + tg2 ~ (1 -~ c z tg  z ~) } ~ / ~, A = (D cos ~)-~, 

B:bD-l tgo~,  C=cD-ltgo~tg~, E=(A~+6~)I/2. 

The function m -- m (q) was chosen from the condition that the normal to the ellipsoid ~urface 
on the line ~ = i be perpendicular to the unit vector 1 (cos ~, sin ~ cos 6, sin ~ sin ~), 
giving the direction of the incident flow: 

N 
-- arctg -~-, F < 0, 

m (~) = y = o, 
2 

arc tg ,  _N,  F 2 >  0, 
F 
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F = Mcos~] + L s i n %  N = A c o s a  + Bb-' sin~zcos[8 + Cc- '  s inasin[% 

M = Eb -1 sin o~ cos t~ -- A B E  - l  cos ~ -- BC (Ec) -~ sin ~ sin [~, 

L = E - '  (,Ac -~ sin (z sin [~-- C cos ~z). 

The governing parameters of the problem were varied in the following ranges: 

03<o<a, 0,3<c <3, 

(7) 

(8) 

e = 0 . 1 ,  ~ = 0 , 5 ,  l ~ R e ~ 5 . 1 0 5 ,  O . 05~ . ~%=cons t . ~0 . 25 .  

The a v e r a g e  c o m p u t i n g  t i m e  on t h e  BESM-6 c o m p u t e r  f o r  one i t e m  on a 15 x 45 x 15 mesh ( i n  
t h e  d i r e c t i o n s  6, q ,  ~, r e s p e c t i v e l y )  was 1 .5  h .  

D u r i n g  t h e  c o m p u t a t i o n s  we d e t e r m i n e d  t h e  componen t s  o f  t h e  v e l o c i t y  v e c t o r ,  t h e  t em-  
p e r a t u r e  and t h e  p r e s s u r e  a c r o s s  t h e  shock  l a y e r ,  t h e  shock  wave s t a n d o f f  d i s t a n c e ,  and: 
a l s o  t h e  c o e f f i c i e n t s  o f  f r i c t i o n  and h e a t  t r a n s f e r  on t h e  body s u r f a c e ,  f o r  which  t h e  e x -  
pressions have the following form: 

aT 2 VR-~ O [ u \ l/-Re q : k  

% I* , p| q(O, ~) 

C ~  ~ , C n - -  - -  

�9 ~ (o, ~) % (0, ~) 

We turn now to the matter of the influence of the body shape and angles of attack and 
sideslip on the heat flux distribution along the surface. For ~ = ~ = 0 there are two sym- 
metry planes in the flow, in which the distribution Cq has local extrema. As is shown in 
Fig. 2a, the nature of these extrema depends to a great extent on b and c. For b = 0.7, 
c = 0.3 the heat flux falls off monotonically along both planes of symmetry, and the stag- 
nation point is a point of local maximum of Cq. For b = 2, c = 3 the opposite picture is 
observed: as the distance from the stagnation point increases along both planes of sym- 
metry the heat flux increases, so that at the stagnation point the distribution of Cq has 
a minimum. For the intermediate case of b = 2, c = 0.5 the point ~ = 0 is a saddle point 
in the Cq distribution, since in the plane z1Oz 2 the heat flux increases with increasing 
distance from the stagnation point, and it falls off in the plane z1Oz s. As is shown by 
analysis, this kind of dependence of the Cq distribution in the vicinity of the stagnation 
point on the ellipsoid shape has quite a clear physical meaning. 

Actually, it is clear that the heat flux to the body surface falls off with reduction 
of temperature at the outer edge of the boundary layer, and, on the other hand, increases 
with increase of the energy released within the shock layer, due to effects of viscous dis- 

% pw 
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o,e ~2 ~- -q* o -~2 o 

/ 

I 

Fig. 2. Distributions of Cq and Pw in the planes of sym- 
metry of ellipsoids of different shapes for ~ = 0, Re = 5" 
104 , 8 w= 0.15 and various angles of attack: a) ~ = 0, N = 
0, (i, 3, 5), n = 90 ~ (2, 4, 6), b = 2, c = 3 (I, 2); b = 
2, c = 0.5 (3, 4); b = 0.7, c = 0.3 (5, 6); b) b= 2, c = 3, 

= 0, 15, 30, 45, 60, 75, 90 ~ - i-7. 
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Fig. 3. Dependence of isolines of c~ along the surface of 
the ellipsoids on the angle of attac~ for ~ = 0, Re = 5"104 , 
8 w = 0.15: a) b = 2, c = 3; b) b = 3, c = 2. 

sipation. The temperature at the outer edge of the boundary layer is proportional to ;he 
pressure Pw on the body surface, while the intensity of viscous dissipation is inversely 
proportional to the radius of longitudinal curvature of the ellipsoid shape in the plane of 
its symmetry. For b < i, c < i, as can be seen in Fig. 2a, the quantity Pw (broken lines) 
falls off quite rapidly with increasing distance from the stagnation point, while the radii 
of the longitudinal curvature increase monotonically with increase of $, so that in thLs 
case the stagnation point is a point of local maximum of Cq. For b > I, c > i the decrease 
of Pw is less significant, but the radii of curvature become monotonically decreasing func- 
tions of ~, as a result of which, for b ! 1.5, c ~ 1.5 the effects of the viscous dissipa- 
tion begin to prevail over the factors causing a decrease of heat flux, and for a giver~ b 
and c the stagnation point becomes a point of local minimum of Cq. It is important to note 
that, as the results of the computations show, the law noted above in the distributions of 
Cq along the planes of symmetry of the ellipsoids in flow at zero angle of attack remains 
valid over a wide range of the Reynolds number and for large Re this effect is more pro- 
nounced. 

For flow over a body at angle of attack with ~ = 0 there is only one plane of ssm~etry 
in the flow. The characteristic form of the distribution of Cq with respect to the coordi- 
nate s (s = g for q = 0 and s = --$ for q = ~) in the plane of symmetry for different angles 
of attack is shown in Fig. 2b. It can be seen that for the given case (b = 3, c = 2) the 
stagnation point for a = 0 is a point of local minimum. For small ~ this minimum is moved 
from the stagnation point in the direction of increased radius of longitudinal curvature of 
the ellipsoid profile in the plane of its symmetry, and in the region where this radius de-~ 
creases, there is a local maximum in the Cq distribution. With further increase of the 
angle of attack this minimum vanishes, while the local maximum decreases in magnitude a:~d 
moves towards the stagnation point, so that for a = 90 ~ , when there is a second plane of 
symmetry in the flow, the stagnation point becomes a point of local maximum of Cq for the 
given plane of symmetry. 

On the whole the computations have shown that even when the flow has a single plan,~ of 
symmetry, the picture of the heat flux distribution along the body surface has quite a com- 
plex form, and, depending on the ellipsoid shape and the angle of attack, it may be quaLita- 
tively different in nature. 
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Fig. 4. Form of isolines of c o for b = 
2, c = 3, Re : 5"I0 ~, e w : 0.15 for non- 
zero angle of attack and sideslip. 

This is easily seen in Fig. 3, which shows the evolution of isolines of the heat flux 
Cq in the plane of the variables (x, y) (x = $ cos q, y = ~ sin q) (Fig. 3a) and x = $ sin 
q, Y = -6 cos q (Fig. 3b) as a function of the angle of attack for b = 2, c = 3 and b = 3, 
c = 2. The point O in these figures corresponds to the stagnation point, and the point A 
corresponds to the "nose"of the ellipsoid z I = z 2 = z 3 = 0. It can be seen that, depending 
on the ratios between b and c, the stagnation point, at which for a = 8 = 0 the heat flux 
had a local minimum, as the angle of attack increases up to 90 deg can become either a sad- 
dle point in the Cq distribution (Fig. 3a), or a point of local maximum of the heat flux 
(Fig. 3b). 

In conclusion we present a typical form of the isolines of heat flux on the surface for 
the general case of flow over an ellipsoid at nonzero angle of attack and sideslip (Fig. 4). 
It can be seen that there is no symmetry in the Cq distribution, and the corresponding pic- 
ture is complex and three-dimensional. 

NOTATION 

~R, qR, ~eR, dimensioned curvilinear coordinates, fixed in the wetted surface of the 
body; R, characteristic linear dimension of the problem; uV , wV , vV~e, physical components 
of the velocity vector in the directions 6, q, ~, respectively; pp~E -I, p~V~(~ + l)p/y, ToT, 
~0~, the density pressure, temperature and viscosity; o, Prandtl number; w, exponent in the 
dependence of viscosity on temperature; Re, Reynolds number; Mg, Mach number; a~B, covariant 
components of the basic metric tensor; a=alla22--a~2; A=A(~, ~) a quantity characterizing the 
shock wave standoff distance; A'jk coefficients depending in a known way on the components 
of the metric tensors a~ and the coordinates ~, D on the body surface; e, angle of attack; 
8, sideslip angle; 7 = Cp/Cv, adiabatic exponent. The subscripts ~, w, s, and 0 refer, 
respectively, to the parameters of the indicent flow, on the body surface, on the shock 
wave, and at the stagnation point of the incident flow. 

LITERATURE CITED 

i. H. K. Cheng, Proc. Heat Transfer and Fluid Mech Inst., Stanford Press (1961). 
2. ~. A. Gershbein, Hypersonic Three-Dimensional Flow with Physical and Chemical Transfor- 

mation [in Russian], Moscow (1981), pp. 29-51. 
3. ~. A. Gershbein, S. V. Peigin, and G. A. Tirskii, Itogi Nauki Tekh. Mekh. Zhidk. Gaza, 

1~, 3-8S (198S). 
4. I. G. Brykina, and E. A. Gershbein, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 91- 

i02 (1979). 
5. E. A. Gershbein, V. S. Shchelin, and S. A. ?unitskii, Izv. Akad. Nauk SSSR, Mekh. Zhidk. 

Gaza, No. 4, 104-108 (1984). 
6. E. A. Gershbein, and S. V. Peigin, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 27- 

~7 ( 1 9 8 6 ) .  
7. E. A. Gershbein, and S. A. Yunitskii, Zh. Prikl. Mat. Mekh., 43, No. 5, 817-828 (1979). 
8. R. R. Eaton, and P. C. Kaestner, AIAA Paper No. 134 (1973). 
9. E. A. Gershbein, and S. A. Yunitskii, Zh. Prikl. Mat. Mekh., 48, No. 5, 768-775 (1984). 

I0. E. A. Gershbein, V. S. Shchelin, and S. A. Yunitskii, Hypersonic Three-Dimensional Flow 
with Physical and Chemical Transformations [in Russian], Moscow (1981), pp. 72-92. 

ii. E. A. Gershbein, V. G. Krupa, and V. S. Shchelin, Zh. Prikl. Mat. Mekh., 50, No. I, 
110-118 (1986). 

150 



12. A. I. Borodin and S. V. Peigin, Teplofiz. Vysok. Temp., 25, No. 3, 509-515 (1987). 
13. A. I. Borodin and S. V. Peigin, Inzh-Fiz. Zh., 53, No. 3, 365-372 (1987). 
14. I. V. Petukhov, Numerical Methods of Solving Differential and Integral Equations and 

Quadrature Formulas [in Russian], Moscow (1964), pp. 304-325. 
15. A. A. Samarskii and E. S. Nikolaev, Methods of Solving Mesh Equations [in Russian], 

Moscow (1978). 

RANDOM MOTION OF SOLID PARTICLES AND ENERGY 

DISSIPATION IN TWO-PHASE FLOW 

L. I. Krupnik, P. V. Ovsienko, 
V. N. Oleinik, and V. G. Ainshtein 

UDC 53~.529.5 

We obtain equations describing the fluctuations and energy loss of particle col- 
lisions in two-phase flow from the experimental velocity distribution functions. 

The random motion of solid particles in a turbulent gas flow is one of the deciding 
factors in the formation of hydrodynamic structures in two-phase flow and it significantly 
affects the intensity of transport processes [i]. The mechanism of the generation of ran- 
dom motion is usually [2-5] explained in terms of the time and spatial scales of turbulence 
in the carrier medium and collisions between the particles and the walls of the channel. 

Theoretical studies [4, 5j have shown that as the particle relaxation time increases, 
the degree to which the particles are drawn into the fluctuating motion of the gas decreases 
and approaches zero in the case when the phases slip past one another with their average 
velocities. This type of two-phase motion takes place in the transport of hydraulically 
large particles of sizes 1'10-4-3"10 -3 m in chemical engineering processes such as hetero- 
geneous catalysis, gasification of coal, adsorption, dehydration, sorting, and so on. 

The mathematical description of the motion of solid particles with their collisions 
taken into account [6, 7] leads to equations containing the stress tensor in the solid phase 
and the flux vector of the fluctuating motion of the solid particles as unknowns. As ;~hown 
in [6], these quantities can be expressed explicitly in terms of the macroscopic parameters 
of the two-phase flow in the framework of the statistical theory of dispersed systems with 
the help of the position and velocity distribution functions of the solid particles. 

There is no information available in the literature on the parameters of random motion 
in two-phase flow in the presence of collisions between the solid particles. This situation 
has stimulated the work described in the present paper. 

We carried out a systematic experimental study of the distribution functions of the 
longitudinal P(ux) and transverse P(uy) components of the instantaneous velocities of glass 
balls of diameters d = 113 • 9 ~n and d = 1.18 man. The measurements were done by the con- 
tact method [8], in which signals can be detected from a single collision of a solid p~rti- 
cle against the sensitive area of the detector. With the help of an AI-256-6 pulse analyzer, 
we obtained data on the normal component of the amplitude of the collision impulse, the time 
duration of the collision, the time interval between collisions, and the flux density of par- 
ticles at different points in a cross section of the channel. The study was performed on the 
stabilized section of the motion in a vertical pipe of diameter D = 2R = 50 mm. The velocity 
of the medium (air) was varied between 5 and 23 m/sec. The input--output ratio of solic par- 
ticles in the flow reached 25 kg'h/(kg'h). Before taking measurements in the pipe, we first 
calibrated the detectors by fixing the number of the channel of the pulse analyzer receiving 
a signal from a particle of known size, and moving with a known velocity and contactin~ the 
sensitive element of the detector at a known angle of incidence. 
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